Программа гидравлического расчета газопровода низкого давления пример. Гидравлический расчет газопроводов. Вычисления с помощью номограмм

размер шрифта

ПРОЕКТИРОВАНИЕ И СТРОИТЕЛЬСТВО ГАЗОПРОВОДОВ ИЗ ПОЛИЭТИЛЕНОВЫХ ТРУБ ДИАМЕТРОМ ДО 300 ММ- СП 42-101-96 (2020) Актуально в 2018 году

ГИДРАВЛИЧЕСКИЙ РАСЧЕТ ГАЗОПРОВОДОВ

1. Гидравлический расчет газопроводов следует выполнять, как правило, на электронно-вычислительных машинах с использованием оптимального распределения расчетных потерь давления между участками сети.

При невозможности или нецелесообразности выполнения расчета на электронно-вычислительной машине (отсутствие соответствующей программы, отдельные небольшие участки газопроводов и т.п.) гидравлический расчет допускается производить по приведенным ниже формулам или номограммам, составленным по этим формулам.

2. Расчетные потери давления в газопроводах высокого и среднего давлений следует принимать в пределах давления, принятого для газопровода.

Расчетные потери давления в распределительных газопроводах низкого давления следует принимать не более 180 даПа (мм вод.ст.), в т.ч. в уличных и внутриквартальных газопроводах - 120, дворовых и внутренних газопроводах - 60 даПа (мм вод.ст.).

3. Значения расчетной потери давления газа при проектировании газопроводов всех давлений для промышленных, сельскохозяйственных и коммунально-бытовых предприятий принимаются в зависимости от давления газа в месте подключения, с учетом технических характеристик принимаемых к установке, газовых горелок, устройств автоматики безопасности и автоматики регулирования технологического режима тепловых агрегатов.

4. Гидравлический расчет газопроводов среднего и высокого давлений во всей области турбулентного движения газа следует производить по формуле:

где: P_1 - максимальное давление газа в начале газопровода, МПа;

Р_2 - то же, в конце газопровода, МПа;

l - расчетная длина газопровода постоянного диаметра, м;

d_i - внутренний диаметр газопровода, см;

тета - коэффициент кинематической вязкости газа при температуре 0°С и давлении 0,10132 МПа, м2/с;

Q - расход газа при нормальных условиях (при температуре 0°С и давлении 0,10132 МПа), м3/ч;

n - эквивалентная абсолютная шероховатость внутренней поверхности стенки трубы, принимаемая для полиэтиленовых труб равной 0,002 см;

ро - плотность газа при температуре 0°С и давлении 0,10132 МПа, кг/м3.

5. Падение давления в местных сопротивлениях (тройники, запорная арматура и др.) допускается учитывать путем увеличения расчетной длины газопроводов на 5-10%.

6. При выполнении гидравлического расчета газопроводов по приведенным в настоящем разделе формулам, а также по различным методикам и программам для электронно-вычислительных машин, составленным на основе этих формул, диаметр газопровода следует предварительно определять по формуле:

(2)

где: t - температура газа, °C;

P_m - среднее давление газа (абсолютное) на расчетном участке газопровода, МПа;

V - скорость газа м/с (принимается не болев 7 м/с для газопроводов низкого давления, 15 м/с - среднего и 25 м/с - для газопроводов высокого давления);

d_i, Q - обозначения те же, что и в формуле (1).

Полученное значение диаметра газопровода следует принимать в качестве исходной величины при выполнении гидравлического расчета газопроводов.

7. Для упрощения расчетов по определению потерь давления в полиэтиленовых газопроводах среднего и высокого давлений рекомендуется использовать приведенную на рис. 1 номограмму, разработанную институтами ВНИПИГаздобыча и ГипроНИИГаз для труб диаметром от 63 до 226 мм включительно.

Пример расчета. Требуется запроектировать газопровод длиной 4500 м, максимальным расходом 1500 м3/ч и давлением в точке подключения 0,6 МПа.

По формуле (2) находим предварительно диаметр газопровода. Он составит:

Принимаем по номограмме ближайший больший диаметр, он составляет 110 мм (di=90 мм). Затем по номограмме (рис. 1) определяем потери давления. Для этого через точку заданного расхода на шкале Q и точку полученного диаметра на шкале d_i проводим прямую до пересечения с осью I. Полученная точка на оси I соединяется с точкой заданной длины на оси l и прямая продолжается до пересечения с осью. Поскольку шкала l определяет длину газопровода от 10 до 100 м, уменьшаем для рассматриваемого примера длину газопровода в 100 раз (с 9500 до 95 м) и соответствующим увеличением полученного перепада давления тоже в 100 раз. В нашем примере значение 106 составит:

0,55 100 = 55 кгс/см2

Определяем значение Р_2 по формуле:

Полученный отрицательный результат означает, что трубы диаметром 110 мм не обеспечат транспорт заданного расхода, равного 1500 м3/ч.

Повторяем расчет для следующего большего диаметра, т.е. 160 мм. В этом случае P2 составит:

= 5,3 кгс/см2 = 0,53 МПа

Полученный положительный результат означает, что в проекте необходимо заложить трубу диаметром 160 мм.

Рис. 1. Номограмма для определения потерь давления в полиэтиленовых газопроводах среднего и высокого давления

8. Падение давления в газопроводах низкого давления следует определять по формуле:

(3)

где: Н - падение давления, Па;

n, d, тета, Q, ро, l - обозначения те же, что и в формуле (1).

Примечание: для укрупненных расчетов вторым слагаемым, указанным в скобках в формуле (3), можно пренебречь.

9. При расчете, газопроводов низкого давления следует учитывать гидростатический напор Нg, мм вод.ст., определяемый по формуле:

где: h - разность абсолютных отметок начальных и конечных участков газопровода, м;

ро_a - плотность воздуха, кг/м3, при температуре 0°С и давлении 0,10132 МПа;

ро_o - обозначение то же, что в формуле (1).

10. Гидравлический расчет кольцевых сетей газопроводов следует выполнять с увязкой давлений газа в узловых точках расчетных колец при максимальном использовании допустимой потери давления газа. Неувязка потерь давления в кольце допускается до 10%.

При выполнении гидравлического расчета надземных и внутренних газопроводов с учетом степени шума, создаваемого движением газа, следует принимать скорости движения газа не болев 7 м/с для газопроводов низкого давления, 15 м/с - для газопроводов среднего давления, 26 м/с - для газопроводов высокого давления.

11. Учитывая сложность и трудоемкость расчета диаметров газопроводов низкого давления, особенно кольцевых сетей, указанный расчет рекомендуется проводить на ЭВМ или по известным номограммам для определения потерь давления в газопроводах низкого давления. Номограмма для определения потерь давления в газопроводах низкого давления для природного газа с ро =0,73 кг/м3 и тета =14,3 106м2/с приведена на рис. 2.

В связи с тем, что указанные номограммы составлены для расчета стальных газопроводов, полученные значения диаметров, вследствие более низкого коэффициента, шероховатости полиэтиленовых труб, следует уменьшать на 5-10%.

Рис. 2. Номограмма для определения потерь давления в стальных газопроводах низкого давления

ПРИЛОЖЕНИЕ 11
(справочное)

Основная задача гидравлических расчетов заключается в том, чтобы определить диаметры газопроводов. С точки зрения методов гидравли­ческие расчеты газопроводов можно разделить на следующие типы:

· расчет кольцевых сетей высокого и среднего давления;

· расчет тупиковых сетей высокого и среднего давления;

· расчет многокольцевых сетей низкого давления;

· расчет тупиковых сетей низкого давления.

Для проведения гидравлических расчётов необходимо иметь следующие исходные данные:

· расчетную схему газопровода с указанием на ней номеров и длин участков;

· часовые расходы газа у всех потребителей, подключенных к данной сети;

·допустимые перепады давления газа в сети.

Расчетная схема газопровода составляется в упрощенном виде по плану газифицируемого района. Все участки газопроводов как бы вып­рямляются и указываются их полные длины со всеми изгибами и поворотами. Точки расположения потребителей газа на плаке определяются местами расположения соответствующих ГРП или ГРУ.

12.1 Гидравлический расчет кольцевых сетей высокого и среднего давления.

Гидравлический режим работы газопроводов высокого и среднего давления назначается из условий максимального газопотребления.

Расчёт подобных сетей состоит из трёх этапов:

· расчет в аварийных режимах;

· расчет при нормальном потокораспределении;

· расчёт ответвлений от кольцевого газопровода.

Расчетная схема газопровода представлена на рис. 2 . Длины от­дельных участков указаны в метрах. Номера расчетных участков указа­ны числами в кружках. Расход газа отдельными потребителями обозначен буквой V и имеет размерность м 3 /ч. Места изменения расхода газа на кольце обозначены цифрами 0, 1, 2, ..... , и т. д.. Источник питания газом (ГРС) подключен к точке 0.

Газопровод высокого давления имеет в начальной точке 0 избыточ­ное давление газаР Н =0,6 МПа. Конечное давление газа Р К = 0,15 МПа . Это давление должно поддерживаться у всех потребителей, подключен­ных к данному кольцу, одинаковым независимо от места их расположе­ния.

В расчетах используется абсолютное давление газа, поэтому расчет­ные Р Н =0,7 МПа и Р К =0,25 МПа. Длины участков переведены в километры.

Для начало расчёта определяем среднюю удельную разность квадратов давлений:

А СР = (Р 2 н - Р 2 к) / 1,1 å l i

где å l i - сумма длин всех участков по расчётному направлению, км.

Множитель 1,1 означает искусственное увеличение длинны газопровода для компенсации различных местных сопротивлений (повороты, задвижки, компенсаторы и т. п.).



Далее, используя среднее значение А СР и расчетный расход газа на соответствующем участке, по номограмме рис. 11.2 определяем диаметр газопровода и по нему, используя ту же номограмму, уточняем значе­ние А для выбранного стандартного диаметра газопровода. Затем по уточненному значению А и расчетной длине, определяем точное значе­ние разности Р 2 н - Р 2 к на участке. Все расчеты сводят в таблицы.

12.1.1 Расчет в аварийных режимах.

Аварийные режимы работы газопровода наступают тогда, когда откажут в работе участки газопровода, примыкающие к точке питания 0. В нашем случае это участки 1 и 18. Питание потребителей в аварийных режимах должно осуществляться по тупиковой сети с условием обязательного поддержания давления газа у последнего потребителя Р К = 0,25 МПа.

Результаты расчетов сводим в табл. 2 и 3.

Расход газа на участках определяется по формуле:

V Р = 0,59 S (К ОБ i V i) (м 3 / ч),

где К ОБ i - коэффициент обеспеченности различных потребителей газа;

V i - часовой расход газа у соответствующего потребителя, м 3 / ч.

Для простоты коэффициент обеспеченности принят равным 0,8 у всех потребителей газа.

Расчетную длину участков газопровода определяют по уравнению:

l Р = 1,1 l Г (км),

Средняя удельная разность квадратов давлений в первом аварийном режиме составит:

А СР = (0,7 2 - 0,25 2) / 1,1 6,06 = 0,064 (МПа 2 / км),

å l i = 6,06 (км),

Отказал участок 1
№ уч. d У мм l Р км V Р м 3 / ч Р 2 н-Р 2 к l Р Р 2 н-Р 2 к, МПа 2
0,077 10053,831 0,045 0,003465
1,848 9849,4501 0,04 0,07392
0,407 9809,2192 0,04 0,01628
0,726 9796,579 0,04 0,02904
0,077 9787,3632 0,19 0,01463
0,473 9785,6909 0,19 0,08987
0,253 9745,46 0,18 0,04554
0,044 2566,8403 0,1 0,0044
0,121 2554,2002 0,1 0,0121
0,22 1665,1787 0,053 0,01166
0,121 1663,5064 0,053 0,006413
0,176 1459,1257 0,045 0,00792
0,154 1449,9099 0,045 0,00693
0,913 1437,2697 0,045 0,041085
0,451 903,3339 0,045 0,020295
0,154 901,6616 0,2 0,0308
0,363 12,64016 0,031 0,011253
ål Р =6,578 å(Р 2 н-Р 2 к)=0,425601


P К = Ö(0,7 2 - 0,425601) - 0,1 = 0,1537696 Ошибка: 1,5 % <5 %

Переходим к расчету во втором аварийном режиме.

Отказал участок 18
№ уч. d У мм l Р км V Р м 3 / ч Р 2 н-Р 2 к l Р Р 2 н-Р 2 к, МПа 2
0,22 10053,831 0,045 0,0099
0,231 10041,191 0,045 0,010395
0,154 9152,1692 0,038 0,005852
0,451 9150,4969 0,038 0,017138
0,913 8616,5611 0,1 0,0913
0,154 8603,9209 0,1 0,0154
0,176 8594,7051 0,1 0,0176
0,121 8390,3244 0,1 0,0121
0,22 8388,6521 0,1 0,022
0,121 7499,6307 0,085 0,010285
0,044 7486,9905 0,085 0,00374
0,253 308,37082 0,085 0,021505
0,473 268,1399 0,06 0,02838
0,077 266,4676 0,06 0,00462
0,726 257,2518 0,06 0,04356
0,407 244,61169 0,06 0,02442
1,903 204,38072 0,045 0,085635
ål Р =6,644 å(Р 2 н-Р 2 к)=0,42383

P К = Ö(0,7 2 - 0,42383) - 0,1 = 0,1572353 Ошибка: 2,9 % <5 %

Отсюда следует, расчёт сделан правильно.

На этом расчет во втором аварийном режиме заканчивается.

Зная потери давления на каждом участке, определяем абсолютное давление в каждой точке в обоих аварийных режимах:

P i = Ö P 2 Н - S(P 2 Н - P 2 К) i ,

где S(P 2 Н - P 2 К) - сумма разности квадратов давлений на участках, предшествующих точке определения давления.

Все расчеты по определению давлений в различных точках кольца можно свести в таблицу.

Номер точки на кольце Отказал участок 1 Отказал участок 19
Давление газа, МПа Давление газа, МПа
0,7 0,7
0,2537696 0,6928925
0,2750491 0,6853503
0,3262698
0,3560154 0,6683674
0,409673 0,5961669
0,418055 0,5831081
0,4274131 0,567816
0,4348505 0,5570592
0,4480569 0,5369497
0,4613621 0,5272855
0,4661062 0,523727
0,5126353 0,5027773
0,593856 0,473714
0,6060487 0,4688123
0,6295514 0,4197916
0,6423512 0,3896216
0,6975206 0,2572353

Давление газа в точках подключения к кольцу потребителей необходимо знать для определения диаметров ответвлений при гидравлическом расчете последних.

12.1.2 Расчет ответвлений.

В этом расчете определяются диаметры газопроводов, подводящих газ от кольцевого газопровода к потребителям V 1 , V 2 , ..... , и т. д.. Для этого используется расчет давления в точках изменения расходов 1, 2, 3, .... 17 сведенный в таблицу? . Перепад давлений в точке подключения газопровода ответвления к кольцевому газопроводу и заданным конечным давлением у потребителя.

Для определения начального давления из таблицы 2,3 для одной и той же точки выбираем наименьшее абсолютное давление газа. Далее определяется удельная разность квадратов давлений на участке:

A = (P 2 Н - P 2 К) / 1,1 l Г i , (МПа 2 / км),

По номограмме рис. 11.2 из определяем диаметр газопровода.

Все расчеты по определению диаметров ответвлений сводим в таблицу:

А 19 = 0,0145;

А 20 = 0,1085;

А 21 = 0,4997;

А 22 = 0,3649;

А 23 = 2,3944;

А 24 = 0,8501;

А 25 = 1,5606;

А 26 = 1,1505;

А 27 = 0,8376;

А 28 = 0,9114;

А 29 = 2,3447;

А 30 = 2,4715;

А 31 = 0,8657;

А 32 = 1,7872;

А 33 = 1,2924;

А 34 = 1,3528;

А 35 = 0,0664;

Номер ответв-ления. Начальное давление, МПа Конечное давление, МПа Длина участка, Км Расход газа, м 3 / ч Диаметр условный, мм
0,2538 0,25 0,12 26,78
0,275 0,25 0,11 1883,52
0,3263 0,25 0,08 3,543
0,356 0,25 0,16 1131,22
0,4097 0,25 0,04 26,78
0,418 0,25 0,12 19,525
0,4274 0,25 0,07 433,01
0,4348 0,25 0,1 3,543
0,448 0,25 0,15 1883,52
0,4614 0,25 0,15 26,78
0,4661 0,25 0,06 15208,94
0,5028 0,25 0,07 85,235
0,4737 0,25 0,17 3,543
0,4688 0,25 0,08 19,525
0,4198 0,25 0,08 26,78
0,3896 0,25 0,06 85,235
0,2572 0,25 0,05 433,01

12.1.3 Расчёт при нормальном потокораспределении.

Нормальное потокораспределение предполагает движение газа от питания кольца в обе стороны.

Точка схода обоих потоков газа должна находиться где-то на кольце. Эта точка определяется из следующих условий - расходы газа по обоим направлениям кольца должны быть примерно одинаковыми.

Расчёты при нормальном потокораспределении рекомендуется свести в таблицу.

Таблица 6.

N О участка. Расход на участке, м 3 /ч Диаметр газопровода, мм Длина участка, км Р 2 Н -Р 2 К /l, МПа 2 /км Р 2 Н -Р 2 К, МПа 2 Р 2 Н -Р 2 К /V УЧ, 10 -6
-10650,2445 0,2 0,052 0,0104 0,976
-10623,4645 0,21 0,052 0,01092 1,026
-8739,9445 0,14 0,034 0,00476 0,545
-8736,4015 0,41 0,034 0,01394 1,596
-7605,1815 0,83 0,085 0,07055 9,277
-7578,4015 0,14 0,085 0,0119 1,57
-7558,8765 0,16 0,085 0,0136 1,799
-7125,8665 0,11 0,075 0,00825 1,158
-7122,3235 0,2 0,075 0,015 2,106
-5238,8035 0,11 0,039 0,00429 0,819
-5212,0235 0,04 0,039 0,00156 0,299
+9996,9165 0,23 0,122 0,02806 2,807
+10082,1515 0,43 0,122 0,05246 5,203
+10085,6945 0,07 0,122 0,00854 0,847
+10105,2195 0,66 0,045 0,0297 2,939
+10131,9995 0,37 0,045 0,01665 1,643
+10217,2345 1,68 0,045 0,0756 7,399
+10650,2445 0,07 0,05 0,0035 0,329
S= 0,37968 S= 42,34 10 -6
+0,04934

* Знаки "+" и "-" означают условное деление потоков газа на положительные (направление по часовой стрелке) и отрицательные (движение против часовой стрелки).

Для определения ошибки надо просуммировать по модулю все числа в графе 6 и оценить разность положительных и отрицательных чисел в этой же графе по нижеприведенной формуле

Ошибка составляет: 0,04934 100 / 0,5 0,37968 = 25,99 %

Диаметры участков газопровода в этом режиме выбираются из таб­лицы расчетов в аварийных режимах. Для каждого участка принимается наибольший из двух диаметров. При этом размеры диаметров на голов­ных участках кольца будут наибольшими. Далее размеры диаметров бу­дут монотонно убывать в направлении точки схода потоков.

Для определения удельной разности квадратов давлений на участке используют номограмму рис. 11.2. . Их определяют по известным диаметру и расходу и вносят в графу 5 таблицы. Зная расчетные длины участков, вычисляют разности квадратов давлений на участках и вносят их в графу 6 таблицы.

Критерием правильности расчёта является равенство сумм положительных и отрицательных значений Р 2 н - Р 2 к. Если равенства нет, то разность этих значений не должна превышать 10 % от половины абсолютного значения суммы чисел в графе 6 таблицы. В нашем примере эта разность составляет 25,99 %, что слишком много.

Следовательно, расчёт надо повторить.

DV = å(Р 2 н - Р 2 к) 10 6 / 2 å(Р 2 н - Р 2 к) / Vi.

DV = 0,04934 10 6 / 2 42,34 = 582,66 » 600 (м 3 /ч),

Сумма в знаменателе этой формулы берется из графы 7 таблицы 6.

Увеличим все положительные расходы на 600 м 3 /ч, а все отрицательные расходы уменьшим также на 600 м 2 /ч. Повторим расчет при новых зна­чениях расходов на участках

Таблица 7.

N О Участка. Расход на участке, м 3 /ч Диаметр газопровода, мм Длина участка, км Р 2 Н -Р 2 К /l, МПа 2 /км Р 2 Н -Р 2 К, МПа 2 Р 2 Н -Р 2 К /V УЧ, 10 -6
-11250,2445 0,2 0,06 0,012 0,976
-11223,4645 0,21 0,06 0,0126 1,026
- 9339,9445 0,14 0,037 0,00518 0,545
-9336,4015 0,41 0,037 0,01517 1,596
-8205,1815 0,83 0,1 0,083 9,277
-8178,4015 0,14 0,1 0,014 1,57
-8158,8765 0,16 0,1 0,016 1,799
-7125,8665 0,11 0,085 0,00935 1,158
-7725,3235 0,2 0,085 0,017 2,106
-5838,8035 0,11 0,048 0,00528 0,819
-5812,0235 0,04 0,048 0,00192 0,299
+9396,9165 0,23 0,117 0,02691 2,807
+9482,1515 0,43 0,117 0,05031 5,203
+9485,6945 0,07 0,117 0,00819 0,847
+9505,2195 0,66 0,038 0,02508 2,939
+9531,9995 0,37 0,038 0,01406 1,643
+9617,2345 1,68 0,038 0,06384 7,399
+10050,2445 0,07 0,045 0,00315 0,329
S= 0,38304 S= 43,5 10 -6
+0,00004

Ошибка составляет: 0,00004 100 / 0,5 0,38304 = 0,02 %,

После введения кругового расхода ошибка снизилась до 0,02%, что приемлемо.

На этом гидравлический расчет газопровода высокого дав­ления заканчивается.

12.2. Гидравлический расчет многокольцевых газовых сетей низкого давления.

Гидравлический расчет газопроводов низкого давления (до 5 кПа) сводится к решению транспортной задачи с последующей ее оптимизацией.

Исходные данные для расчета:

1. Общий расход газа через ГРП, питающее сеть низкого давления:

V 0 = 1883,52 (м 3 / ч).

2. Расчетная схема: рис. 3.

3. Расчетный перепад давления в сети:

DP = 1200 (Па).

Задачей гидравлического расчета сети низкого давления является определение диаметров всех ее участков при соблюдении заданного DP . Минимальный диаметр труб в сети должен быть равен 50 мм.

Путевые расходы газа на участках определяются по формуле:

V ПУТ = l ПР i V 0 / Sl ПР i

где l ПР i - приведенная длина участка, м

l ПР i = l Р К Э К З

l Р - расчетная длина участка (l Р = 1,1 l Г ), м;

l Г - геометрическая длина участка по плану района газификации, м;

К Э - коэффициент этажности, учитывающий наличие зданий различной этажности;

К З - коэффициент застройки, учитывающий плотность жилой застройки по трассе газопровода.

Расчет путевых расходов газа сводим в таблицу 8.

Номер участка Геометрич. Длина, м Расчетная Длина, м Коэфф. Этажности Коэфф. Застройки Приведеная длина, м Путевой расход, м 3 / ч
0-1
1-2 48,29538
2-3 96,59077
1-4 144,8862
4-5 144,8862
2-6 144,8862
3-7 144,8862
5-6 193,1815
6-7 96,59077
7-8 96,59077
6-9 96,59077
4-10 144,8862
3-12 144,8862
10-14 96,59077
10-11 96,59077
12-13 96,59077
12-14 96,59077
Sl ПР = 5940

Определяем узловые расходы газа:

V УЗЛ i = 0,5 S V ПУТ i , (м 3 /ч),

где S V ПУТ i - сумма путевых расходов газа на участках, примыкающих к узлу, (м 3 /ч),

V УЗЛ 1 = 96,59077 (м 3 / ч),

V УЗЛ 2 = 144,8862 (м 3 / ч),

V УЗЛ 3 = 193,1815 (м 3 / ч),

V УЗЛ 4 = 217,3292 (м 3 / ч),

V УЗЛ 5 = 169,0338 (м 3 / ч),

V УЗЛ 6 = 265,6246 (м 3 / ч),

V УЗЛ 7 = 169,0338 (м 3 / ч),

V УЗЛ 8 = 48,0338 (м 3 / ч),

V УЗЛ 9 = 48,29538 (м 3 / ч),

V УЗЛ 10 = 169,0338 (м 3 / ч),

V УЗЛ 11 = 48,29538 (м 3 / ч),

V УЗЛ 12 = 169,0338 (м 3 / ч),

V УЗЛ 13 = 48,29538 (м 3 / ч),

V УЗЛ 14 = 96,59077 (м 3 / ч),

Определяем расчетный расход газа на участках.

При вычислении расчетного расхода газа используют первое правило Кирхгофа для сетей, которое можно сформулировать так: алгебраическая сумма всех потоков газа в узле равна нулю.

Минимальное значение расчетного расхода газа на участке должно быть равно половине путевого. Для обеспечения экономичности системы следует выделить главные направления, по которым транспортируется большая часть газа.

Такими направлениями будут:

На этих направлениях можно выделить участки, по которым идут транзитные потоки газа. Это участки:

1-2; 2-6; 2-3; 3-12; 1-4; 4-10.

Здесь расчетный расход определяется по правилу Кирхгофа.

На участках, где нет транзитных потоков газа:

V Р = 0,5 V ПУТ (м 3 /ч),

V Р 0-1 = 1786,929 (м 3 / ч)

V Р 1-2 = 1134,942 (м 3 / ч)

V Р 2-3 = 531,2492 (м 3 / ч)

V Р 1-4 = 555,3969 (м 3 / ч)

V Р 4-5 = 72,44308 (м 3 / ч)

V Р 2-6 = 458,8062 (м 3 / ч)

V Р 3-7 = 72,44308 (м 3 / ч)

V Р 5-6 = 96,59077 (м 3 / ч)

V Р 6-7 = 48,29538 (м 3 / ч)

V Р 7-8 = 48,29538 (м 3 / ч)

V Р 6-9 = 48,29538 (м 3 / ч)

V Р 4-10 = 265,6246 (м 3 / ч)

V Р 3-12 = 265,6246 (м 3 / ч)

V Р 10-14 = 48,29538 (м 3 / ч)

V Р 10-11 = 48,29538 (м 3 / ч)

V Р 12-13 = 48,29538 (м 3 / ч)

V Р 12-14 = 48,29538 (м 3 / ч)

Определяем диаметры участков:

Для этого, используя заданный перепад давления DP, вычисляют среднюю первоначальную удельную потерю давления на главных направлениях:

А = DР / S l Р i (Па/м)

где S l Р i - сумма расчетныхдлин участков, входящих в данное главное направление.

По величине А и расчетному расходу газа на каждом участке по номограмме рис.11.4 определяют диаметры газопровода. Действительное значение удельных потерь давления на участке определяют при выборе стандартного значения условного диаметра по той же номограмме. Действительное значение удельной потери на участке умножают на расчётную длину участка и вычисляют, таким образом, потерю давления на этом участке. Общая потеря давления на всех участках главного направления не должна превышать заданного .

Все расчеты по определению диаметров участков газопровода низкого давления сводят в таблицу.

Номер Участка Расчетн. расход, м 3 / ч Расчет длина, м Средняя потеря давления, Па / м Диаметр Условный, Мм Действит. удельная потеря давления, Па/м Потеря давления на участке, Па Давл. В конце участка, Па
0-1 1786,92 1,33 325 ´ 8 1,1 24,2 4975,8
1-2 1134,94 1,33 273 ´ 7 4865,8
2-3 531,25 1,33 219 ´ 6 0,7 4711,8
3-7 72,44 1,33 108 ´ 4 0,9 4414,8
7-8 48,29 1,33 88,5 ´ 4 1,38 303,6 4111,2
2-6 458,81 1,33 219 ´ 6 0,47 155,1 4710,7
6-7 48,29 1,33 88,5 ´ 4 1,38 303,6 4407,1
Невязка в узле 7: (4414,8-4407,1) / 4414,8 100 % = 0,17 %
3-12 265,62 1,33 159 ´ 4 1,1 4348,8
12-14 48,29 1,33 88,5 ´ 4 1,3 4062,8
1-4 555,4 1,33 219 ´ 6 0,75 247,5 4728,3
4-10 265,62 1,33 159 ´ 4 1,1 4365,3
10-14 48,29 1,33 88,5 ´ 4 1,38 303,6 4061,7
Невязка в узле 14: (4062,8-4061,7)/4062,8 100 % =0,03 %
5-6 96,59 1,33 114 ´ 4 1,2 4182,7
4-5 72,44 1,76 89 ´ 3 1,8 4117,8
Невязка в узле 5: (4182,7-4117,8)/4182,7 100 % =1,55 %
6-9 48,29 1,76 88,5 ´ 4 1,38 303,6 4407,1
10-11 48,29 1,33 88,5 ´ 4 1,38 303,6 4061,7
12-13 48,29 1,33 88,5 ´ 4 1,38 303,6 4045,2

Первым критерием правильности расчёта является невязка давлений в узловых точках, которая не должна быть более 10%. Давление в узловых точках определяется путём вычитания потерь давления на участках из начального давления от ГРП при движении потока газа до рассматриваемого узла по кратчайшему расстоянию. Разность давлений образуется вследствие различных направлений подхода газа к узлу.

Вторым критерием является оценка потерь давления от ГРП до самых удалённых потребителей. Эта потеря не должна быть более расчётного перепада давления, равного 1200 Па и отличатся от него не более чем на 10%.

Условия правильности расчета соблюдаются и на этом расчет многокольцевых сетей низкого давления заканчивается.

12.3 Гидравлический расчет тупиковых газопроводов низкого давления.

Тупиковые газопроводы низкого давления прокладываются внутри жилых домов, внутри производственных цехов и по территории небольших населенных пунктов сельского типа.

Источником питания подобных газопроводов являются ГРП низкого давления.

Гидравлический расчет тупиковых газопроводов производят по номограмме рис. 11.4. из .Особенностью расчёта здесь является то, что при определении потерь давления на вертикальных участках надо учитывать дополнительное избыточное давление из-за разности плотностей газа и воздуха, то есть

DР Д = ± h (r В - r Г) g,

где h -

r В, r Г -

g

Для природного газа, который легче воздуха, при движении его по газопроводу вверх значение будет отрицательным, а при движении вниз положительным.

Учет местных сопротивлений можно производить путем введения надбавок на трение

l Р = l Г * (1 + а/100) , (м),

где а - процентная надбавка.

на стояках - 20%;

при длине 1-2 м. - 450%,

при длине 3-4 м. - 200%,

при длине 5-7 м. - 120%,

при длине 8-12 м. - 50%.

Перепад давления в тупиковых газопроводах низкого давления определяется начальным давлением после ГРП или ГРУ, которое равно 4-5 кПа, и давлением необходимым для работы газогорелочных установок или газовых приборов. Перепад давления , согласно рекомендациям таблицы 11.10. принимаем равным 350 Па.

1. Создаём расчётную схему газопровода: рис. 4.

2. Назначаем магистральное направление.

3. Определяем для каждого участка магистрального направления расчётный расход газа по формуле,

V Р = V ЧАС К ОД , (м 3 /ч),

где - максимальный часовой расход газа соответствующего потребителя, м 3 /ч,

V ЧАС = 1,17 (м 3 /ч),

К ОД - коэффициент одновременности, учитывающий вероятность одновременной работы всех потребителей.

4. Определяем расчётную длину участков магистрального направления (l Р i ) по формуле,

l Р = l Г (1 + а/100) , (м),

где а - процентная надбавка.

на газопроводах от ввода в здание до стояка - 25%;

на стояках - 20%;

на внутри квартирной разводке:

при длине 1-2 м. - 450%,

при длине 3-4 м. - 200%,

при длине 5-7 м. - 120%,

при длине 8-12 м. - 50%.

5. Вычисляем расчётную длину магистрального направления в метрах, суммируя все расчётные длины его участков (S l Р i ).

6. Определяем удельный перепад давления на магистральном направлении

А = DР / S l Р i , (Па/м).

А = 8,1871345 (Па/м).

7. Используя диаграмму рис. 11.4. , определяем диаметры участков газопровода магистрального направления и уточняют удельный перепад давления на каждом участке в соответствии с выбранным стандартным диаметром.

8. Определяем действительный перепад давления газа на каждом участке, умножая удельный перепад давления на расчётную длину участка.

9. Суммируем все потери на отдельных участках магистрального направления.

10. Определяем дополнительное избыточное давление в газопроводе,

DР Д = ± h (r В - r Г) g,

DР Д = 110,26538

где h - разность геометрических отметок в конце и начале газопровода, м;

r В, r Г - плотности воздуха и газа при нормальных условиях, кг/м 3 ;

g - ускорение свободного падения, м/с 2 .

h = 20,7 (м),

11. Вычисляем алгебраическую сумму потерь давления а магистрали и дополнительного избыточного давления и сравниваем её с допустимой потерей давления в газопроводе DР.

Критерием правильности расчёта будет условие

(SDР i ± DР Д + DР ПРИБ) £ DР ,

где SDР i - сумма потерь давлений на всех участках магистрали, Па;

DР Д - дополнительное избыточное давление в газопроводе, Па;

DР ПРИБ - потеря давления газа в газоиспользующем приборе, Па;

- заданный перепад давления, Па.

(SDР i ± DР Д + DР ПРИБ) = 338,24462 Невязка составляет 3,36%.

Отклонение (SDР i ± DР Д + DР ПРИБ) от должно быть не больше 10%.

Расчёт сделан верно.

Все расчёты по определению диаметров газопровода сводим в таблицу.

N O участка Расход газа, м 3 /ч Коэфф. одно- врем. Расчёт. расход, м 3 /ч Длина участка м Надб. на мес. сопр. Расчёт. длина, м Усл. диам. мм Потери давления Па
на 1 м на уч-ке
10-15 1,17 0,65 1,17 13,2 21,3´2,8 2,2 29,04
9-10 0,34 0,45 1,521 3,6 21,3´2,8 14,4
8-9 3,51 0,35 1,5795 3,6 21,3´2,8 4,2 15,12
7-8 4,68 0,29 1,638 3,6 21,3´2,8 4,5 16,2
6-7 5,85 0,26 1,6965 8,75 21,3´2,8 43,75
1-6 11,7 0,255 3,042 21,3´2,8
0-1 17,55 4,47525 21,3´2,8
S42,75 S388,51

Окончательно принимаем следующие диаметры газопровода на участках магистрального направления:

10-15: 21,3´2,8 мм

9-10: 21,3´2,8 мм

8-9: 21,3´2,8 мм

7-8: 21,3´2,8 мм

6-7: 21,3´2,8 мм

1-6: 21,3´2,8 мм

0-1: 21,3´2,8 мм

Два других стояка несут аналогичную нагрузку и по конструкции идентичны расчетному. Поэтому диаметры газопровода на этих стояках принимаем такими же, как и у рассчитанного.

Исключение составят только участки подводящего газопровода 1-2, 6-11. Определяем диаметры газопроводов на этих участках:

1. Расчётные длины ответвлений: 0-1-6-11-12-13-14, 0-1-2-3-4-5 соответственно составят L P 6-11 = 40,25, L P 1-2 = 41,5 (м).

2. Расчетные расходы газа:

Участок 1-2 V Р = 1,6965 (м 3 / ч)

Участок 6-11 V Р = 1,6965 (м 3 / ч).

3.Средняя удельная потеря

От поставщика к потребителю используются трубопроводы и другие специальные сооружения и комплексы, которые бывают разных размеров и конструкций. Чтобы газовая магистраль на всех участках была надёжной и более эффективной в эксплуатации, обязательно проводится гидравлический расчёт газопровода с подбором оптимального для данных эксплуатационных условий режима его работы.

Почему необходимо проводить расчёт газопровода

На протяжении всех участков газопроводной магистрали проводятся расчёты для выявления мест, где в трубах вероятны появления возможных сопротивлений, изменяющих скорость подачи топлива.

Если все вычисления сделать правильно, то можно подобрать наиболее подходящее оборудование и создать экономичный и эффективный проект всей конструкции газовой системы.

Это избавит от лишних, завышенных показателей при эксплуатации и расходов в строительстве, которые могли бы быть при планировании и установке системы без гидравлического расчёта газопровода.

Появляется лучшая возможность подбора нужного размера в сечении и материалов труб для более эффективной, быстрой и стабильной подачи голубого топлива в запланированные точки системы газопровода.

Обеспечивается оптимальный рабочий режим всей газовой магистрали.

Застройщики получают финансовую выгоду при экономии на закупках технического оборудования, строительных материалов.

Производится правильный расчёт газопроводной магистрали с учётом максимальных уровней расхода горючего в периоды массового потребления. Учитываются все промышленные, коммунальные, индивидуально-бытовые нужды.

Классификация газопроводов

Современные газопроводы – это целая система комплексов сооружений, предназначенных для транспортировки горючего топлива от мест его добычи до потребителей. Поэтому по предназначению они бывают:

  • – для транспортировки на большие расстояния от мест добычи до пунктов назначения.
  • Местными – для сбора, распределения и подачи газа к объектам населённых пунктов и предприятий.

По магистральным трассам сооружаются компрессорные станции, которые нужны для поддержания в трубах рабочего давления и поставки газа до назначенных пунктов к потребителям в необходимых объёмах, рассчитанных заранее. В них газ очищается, осушается, сжимается и охлаждается, а затем возвращается в газопровод под определённым давлением, необходимым для данного участка прохождения топлива.

Все газопроводы – это сложные сооружения, оснащённые автоматизированными системами регулировки всеми технологическими процессами. Их эксплуатация основывается на технических исследованиях, в том числе на результатах гидравлического расчёта трубопроводов.

Местные газопроводы, расположенные в населённых пунктах, классифицируются:

  • По виду газа – транспортироваться может природный, сжиженный углеводородный, смешанный и др.
  • По давлению – на разных участках газ бывает с низким, средним и высоким давлением.
  • По расположению – наружные (уличные) и , надземные и подземные.

Принцип работы газовой магистрали

В составе городских систем находятся:

  • источник газоснабжения;
  • газораспределительные станции;
  • газопроводы разных уровней давления;
  • газгольдерные станции;
  • ГРУ и ГРП;
  • средства телемеханизации.

В процессе гидравлического расчёта все эти объекты учитываются, так как каждый из них оказывает своё воздействие на скорость и объём транспортируемого топлива. Вычисления проводятся по отдельным участкам, а затем суммируются.

  1. Сеть газопроводов, расположенных в пределах города, оснащена специальными системами для распределения газа (станциями), которые располагаются в конце всех этих трубопроводов.
  2. При поступлении газа на такую станцию, его давление регулируется и перераспределяется, а напор подачи снижается до допустимых значений.
  3. Затем газ перемещается в регуляторный пункт, оттуда отправляется далее в сеть, где давление снова увеличивается.
  4. Трубопроводы с самым высоким уровнем давления подключаются к системам, расположенным в подземных хранилищах.
  5. Для управления уровнем расхода газа в каждый суточный период, строятся специальные газгольдерные станции.
  6. Газ с высоким и средним показателем уровня давления транспортируется в трубах, которые служат своего рода подпиткой для магистралей с низким напором газа. Для управления процессами перепадов давления устанавливаются специальные точки регулировки.
  7. Чтобы точно учитывать уровни потери давления при транспортировке газа и поступление всего планируемого объёма в назначенный пункт, методом гидравлического расчёта определяют оптимальный диаметр труб, для установки подходящего размера.

Гидравлический расчёт газопровода с низким давлением

Вначале ориентировочно учитывается, сколько населения проживает в данном районе, количество промышленных, общественных объектов, а затем определяется приблизительный объём газа, который потребуется расходовать на бытовые и производственные нужды.

Затем вычисляется средний расход топлива в течение определённого времени (обычно 1 часа).

Требуется учесть точки газораспределения – подсчитывается их количество, а также местонахождение, чтобы знать, какой длины надо будет строить магистраль, какой диаметр труб и строительные материалы выбрать.

Из-за разницы в показателях производится расчёт не только общих перепадов давления всей магистрали, но и в распределительных точках, газопроводах внутри зданий и всех абонентских ветвях.

Если размеры труб разные, то измеряется площадь каждого одинакового участка, рассчитывается расход газа на все из этих показателей в отдельности, а затем суммируется.

Вычислительные работы выполняются с учётом нескольких факторов: расчётных данных отрезка газопровода, фактических показателей со всего участка и эквивалентных показаний.

В итоге подсчитывается узловая и удельная путевая затрата. Узловая сосредоточена в определённой точке магистрали, а удельная путевая распределена между узловыми точками.

Гидравлический расчёт газопровода со средним давлением

Учитываются показания напора топлива в начале его подачи. Этот участок находится в пределах от главной газораспределительной точки до места, где происходит переход высокого давления к среднему. Уровень давления на этом участке должен быть таким, чтобы даже в периоды самых больших нагрузок на магистраль показатели были всегда выше минимальных допустимых отметок.

  1. Применяются вычисления по принципу перемены давления с учётом определённой длины трубопровода.
  2. Вначале рассчитываются потери давления, возникающие на основном участке магистрали, а затем – расход топлива.
  3. По этим средним показателям подбирается необходимая толщина и диаметры труб.
  4. Выбираются все их возможные размеры, а потом по номограмме определяется уровень потерь для каждого варианта.
  5. При правильных показаниях гидравлического расчёта потери давления на таких участках всегда соответствуют постоянному уровню.

Вычисления проводятся с учётом самого высокого натиска газа, а также всех особенностей спецификации данного газопровода. Поэтому подбираются строительные материалы и виды труб с такими техническими характеристиками, которые обеспечат нормальное функционирование системы газопровода по всей магистрали. Обязательно учитываются и все окружающие условия, где будет проложен газопровод. Досконально изучается местность и составляется точный её план. Далее:

Гидравлический расчёт газопроводов и среднего давления

  • Составляется схема проекта с чётко обозначенными ответвлениями к местам потребления.
  • Выбирается минимальная длина пути и обязательно расположение по кольцу.
  • Расчёты производятся на основании измерений всех участков с учётом масштаба.
  • Результаты показаний увеличиваются – в итоге расчётная длина каждого участка будет больше на 10%.
  • Показания гидравлического расчёта, выполненного с каждого отдельного участка, суммируются для определения общего расхода топлива.
  • Затем определяется внутренний оптимальный размер трубы.

Что ещё учитывается при расчёте газопроводной магистрали

В результате трения о стенки скорость газа по сечению трубы различается – по центру она быстрее. Однако применяется для расчётов средний показатель – одна условная скорость.

Различают два вида перемещения по трубам: ламинарное (струйное, характерное для труб с малым диаметром) и турбулентное (имеет неупорядоченный характер движения с непроизвольным образованием вихрей в любом месте широкой трубы).

Газ перемещается не только из-за оказываемого на него внешнего давления. Его слои оказывают давление между собой. Поэтому учитывается и фактор гидростатического напора.

На скорость перемещения влияют и материалы труб. Так в стальных трубах в процессе эксплуатации увеличивается шероховатость внутренних стенок и оси сужаются по причине зарастания. Полиэтиленовые трубы, наоборот, увеличиваются во внутреннем диаметре с уменьшением толщины стенок. Всё это учитывается при расчётном давлении.

Для расчёта движения газа по трубам берутся значения диаметра трубы, расходы топлива и потеря напора. Вычисляется в зависимости от характера движения. При ламинарном – расчёты производятся строго математически по формуле:

Р1 – Р2 = ∆Р = (32*μ*ω*L)/D2 кг/м2 (20), где:

  • ∆Р – кгм2, потери напора в результате трения;
  • ω – м/сек, скорость движения топлива;
  • D – м, диаметр трубопровода;
  • L – м, длина трубопровода;
  • μ - кг сек/м2, вязкость жидкости.

При турбулентном движении невозможно применить точные математические расчёты по причине хаотичности движения. Поэтому применяются экспериментально определяемые коэффициенты.

Рассчитываются по формуле:

Р1 – Р2 = (λ*ω2*L*ρ)/2g*D (21), где:

  • Р1и Р2 – давления в начале и конце трубопровода, кг/м2;
  • λ – безразмерный коэффициент сопротивления;
  • ω – м/сек, средняя по сечению трубы скорость движения газа;
  • ρ – кг/м3, плотность топлива;
  • D – м, диаметр трубы;
  • g – м/сек2, ускорение силы тяжести.

Видео: Основы гидравлического расчета газопроводов

I. Разновидности расчетов сетей:

1) Оптимизационные и технико-экономические расчеты решают задачи выбора основных параметров, включаемых в задание на проектирование, в частности: выбор оптимального направления и условий прокладки трубопровода, определение наиболее эффективной технологической схемы транспортировки и параметров трубопровода, определение целесообразного уровня резервирования в элементах систем и другие

2) Технологические расчеты включают выбор технологии и технологической схемы транспортировки, обоснование технологической структуры трубопровода, определение состава и типа используемого оборудования, режимов его работы и другие

3) Гидравлические расчеты предусматривают определение давления и скорости перемещаемой по трубопроводу среды в различных сечениях трубопровода, а также потери напора движущегося потока

4) Тепловые расчеты включают определение температуры транспортируемого продукта, оценку температуры стенок трубопроводов и оборудования, а также потерь тепла трубопроводами и их термических сопротивлений

5) Механические расчеты предполагают оценку прочности, устойчивости, и деформации трубопровода, конструкций, установок и оборудования под действием температуры, давления и других нагрузок и выбор значений параметров, обеспечивающих надежную работу в заданных условиях

6) Расчет внешних воздействий на процесс транспортировки включают определение температуры внешней среды, ветровых, снеговых и других механических нагрузок, оценку сейсмичности и другие

7) Расчет свойств транспортируемой среды предусматривает определение физических, химических, термодинамических и прочих характеристик, необходимых для проектирования трубопроводов и прогнозирования режимов его эксплуатации

II. Цель гидравлического расчета

Прямой задачей при проектировании газопроводов является определение внутреннего диаметра труб при пропуске необходимого количества газа при допустимых для конкретных условий потерях давления.

Обратная задача – определение потерь давления при заданном расходе, диаметре газопровода и давлении.

III. Уравнения, являющиеся основанием для вывода формул гидравлического расчета

Для большинства задач расчета газопроводов движение газа можно считать изотермическим, температура трубы принимается равной температуре грунта. Следовательно определяющими параметрами будут: давление газа р, его плотность ρ и скорость движения ω. Для их определения нам нужна система из 3 уравнений:

1) Уравнение Дарси в дифференциальной форме, определяющее потери давления на преодоление сопротивлений:

Где – коэффициент трения, d – внутренний диаметр

2) Уравнение состояния для учета изменения плотности от изменения давления:

3) Уравнение неразрывности:

Где М – массовый расход, Q 0 – объемный расход, приведенный к нормальным условиям

Решая систему, получим основное уравнение для расчета газопроводов высокого и среднего давления:

Для расчета городских газопроводов Т≈Т 0 , следовательно:

Для расчета низкого давления подставим , а так как ≈Р 0 , то формула примет вид:

IV. Основные составляющие сопротивления движения газа

· Линейные сопротивления трения по всей длине газопровода

· Местные сопротивления в местах изменения скоростей и направления движения

По соотношению местных потерь и потерь давления по длине сети бывают:

Короткие – местные потери соизмеримые с потерями по длине

Длинные – местные потери пренебрежимо малы по отношению к потере по длине (5-10%)

V. Основные формулы для гидравлического расчета согласно
СП 42-101-2003

1. Падение давления на участке газовой сети можно определить по формулам:

а) Для среднего и высокого давления:

Р н - абсолютное давление в начале газопровода, МПа;

Р к - абсолютное давление в конце газопровода, МПа;

Р 0 = 0,101325 МПа;

Коэффициент гидравлического трения;

l - расчетная длина газопровода постоянного диаметра, м;

d - внутренний диаметр газопровода, см;

Плотность газа при нормальных условиях, кг/м 3 ;

Q 0 - расход газа, м 3 /ч, при нормальных условиях;

б) Для низкого давления:

Р н - избыточное давление в начале газопровода, Па;

Р к - избыточное давление в конце газопровода, Па

в) В трубопроводах жидкой фазы СУГ:

V – средняя скорость движения сжиженных газов, м/с: во всасывающих трубопроводах – не более 1,2 м/с; в напорных трубопроводах – не более 3 м/с

2. Режим движения газа по газопроводу, характеризуемый числом Рейнольдса:

где ν - коэффициент кинематической вязкости газа при нормальных условиях, 1,4 10 -6 м 2 /с

Условие гидравлической гладкости внутренней стенки газопровода:

n - эквивалентная абсолютная шероховатость внутренней поверхности стенки трубы, принимаемая равной для новых стальных - 0,01 см, для бывших в эксплуатации стальных - 0,1 см, для полиэтиленовых независимо от времени эксплуатации - 0,0007 см/

3. Коэффициент гидравлического трения λ определяется в зависимости от значения Re:

а) для ламинарного режима движения газа Re ≤ 2000:

б) для критического режима движения газа 2000≤ Re ≤ 4000:

в) при Re > 4000 - в зависимости от выполнения условия гидравлической гладкости внутренней стенки газопровода:

Для гидравлически гладкой стенки:

· при 4000 < Re < 100000:

· при Re > 100000:

Для шероховатых стенок:

4. Предварительный подбор диаметров участков сети

, где

· d p - расчетный диаметр [см]

· А, В, m, m1 - коэффициенты, определяемые по таблицам 6 и 7 СП 42-101-2003 в зависимости от категории сети (по давлению) и материала газопровода

· - расчетный расход газа, м 3 /ч, при нормальных условиях;

· ΔP уд - удельные потери давления (Па/м - для сетей низкого давления, МПа/м - для сетей среднего и высокого давления)

Внутренний диаметр газопровода принимается из стандартного ряда внутренних диаметров трубопроводов: ближайший больший - для стальных газопроводов и ближайший меньший - для полиэтиленовых.

5. При расчете газопроводов низкого давления учитывается гидростатический напор Нg, даПа, определяемый по формуле:

где g - ускорение свободного падения, 9,81 м/с 2 ;

h - разность абсолютных отметок начальных и конечных участков газопровода, м;

ρ а - плотность воздуха, кг/м 3 , при температуре 0°С и давлении
0,10132 МПа;

ρ 0 - плотность газа при нормальных условиях, кг/м 3

6. Местные сопротивления:

Для наружных надземных и внутренних газопроводов расчетную длину газопроводов определяют по формуле:

где l 1 – действительная длина газопровода, м;

Σξ – сумма коэффициентов местных сопротивлений участка газопровода

Падение давления в местных сопротивлениях (колена, тройники, запорная арматура и др.) допускается учитывать путем увеличения фактической длины газопровода на 5 - 10 %

При расчете внутренних газопроводов низкого давления для жилых домов допускается определять потери давления газа на местные сопротивления в размере:

На газопроводах от вводов в здание:

· до стояка – 25% линейных потерь

· на стояках – 20% линейных потерь

На внутриквартирной разводке:

· при длине разводки 1 - 2 м – 450% линейных потерь

· при длине разводки 3 - 4 м – 300% линейных потерь

· при длине разводки 5 - 7 м – 120% линейных потерь

· при длине разводки 8 - 12 м – 50% линейных потерь

Более подробные данные о величине ξ приведены в справочнике С.А.Рысина:

7. Расчет кольцевых сетей газопроводов следует выполнять с увязкой давлений газа в узловых точках расчетных колец. Неувязка потерь давления в кольце допускается до 10 %. При выполнении гидравлического расчета надземных и внутренних газопроводов с учетом степени шума, создаваемого движением газа, следует принимать скорости движения газа не более 7 м/с для газопроводов низкого давления, 15 м/с для газопроводов среднего давления, 25 м/с для газопроводов высокого давления.

VI. По конфигурации сети бывают:

1) Простые: трубопроводы с постоянным диаметром и не имеющие ответвлений

2) Сложные: имеющие хотя бы одно ответвление

а) Тупиковые (обычно сети низкого давления, позволяют сэкономить на трубопроводах, т. к. имеют минимальную длину)

б) Кольцевые (обычно сети высокого и среднего давления, имеют возможность резервирования, т.е. продолжения снабжения газом объектов в случае аварии на одном из участков путем перераспределения потоков)

в) Смешанные (сочетают возможности тупиковых и кольцевых сетей, обычно получаются из тупиковых сетей путем их закольцовки – добавления перемычки между стратегически важными точками)

Вопросы для самопроверки

11. Разновидности расчетов сетей

12. Цели гидравлического расчета

13. Понятие о сопротивлении движению газа

14. Определение основных констант и переменных, входящих в формулы гидравлического расчета

15. Учет местных сопротивлений при гидравлическом расчете газопроводов

16. Допустимые невязки и скорости газа в сетях

17. Классификация сетей по конфигурации.

Б2Л10 СГРГП

Лекция 10

Потребление газа характеризуется большой неравномерностью по месяцам года, дням, неделям и часам суток.

Режим работы системы газоснабжения зданий зависит от многих факторов: в жилых зданиях – от числа и типа установленных газовых приборов, степени благоустройства зданий, климатических условий, времени года, количества людей, проживающих в зданиях; в коммунально-бытовых, общественных и производственных зданиях, помимо перечисленных факторов – от характера работы технологического оборудования и технологических процессов, режима работы цехов и предприятия в целом.

Системы газоснабжения рассчитывают на подачу максимального расчетного часового расхода газа, который определяется по годовой потребности в газе.

Максимальный часовой расход газа на хозяйственные и производственные нужды при нормальных условиях (давлении 0,1 Мпа при 0°С) определяют по формуле

где – годовой расход газа, м 3 /год; − коэффициент перехода от годового расхода газа к максимальному часовому (коэффициент часового максимума расхода газа).

Для жилых и общественных зданий расчетный часовой расход газа определяют с учетом общего числа газовых однотипных приборов n, числа их типов или однотипных групп m, номинального расхода газ одним газовым прибором – по паспорту или технической характеристике , м 3 /ч, и коэффициенту одновременного действия приборов , по формуле

Для расчета газопроводов выполняют гидравлический расчет из условий бесперебойной подачи газа в часы максимального газопотребления.

Расчет трубопроводов газовой сети сводится к подбору диаметров труб по расчетным расходам и потерям давления газа.

Предварительное определение диаметров отдельных расчетных участков газопроводов выполняется по формуле

где − часовой расход газа, м 3 , при нормальных начальных условиях давления и температуры газа (0,1 Мпа и 0°С); − абсолютное давление газа на расчетном участке газопровода, МПа; – скорость движения газа, м/с.

Далее определяют падение давления газа по длине газопровода и в местных сопротивлениях: на поворотах, в соединениях, в фасонных частях, арматуре и пр. С учетом дополнительного гидростатического напора газа это падение давления сравнивают с допустимым. Если падение давления превышает допустимую величину, то делают перерасчет диаметров на отдельных расчетных участках в сторону их увеличения.

Падение давления газа по длине газопровода низкого давления определяют в зависимости от режима движения газа, который характеризуется числом Рейнольдса:

Для ламинарного режима движения газа при Re ≤ 2000 падение давления газа на трение по длине:


для турбулентного режима при Re > 4000

где – падение давления, Па; – расход газа, м 3 /ч, при нормальных условиях (давление 0,1 МПа и температуре 0°С); d – внутренний диаметр газопровода, см; – коэффициент кинематической вязкости газа, м 2 /с, при нормальных начальных условиях состояния газа; – плотность газа, кг/м 3 , тоже при нормальных начальных условиях состояниях газа; – эквивалентная абсолютная шероховатость труб: для стальных труб = 0,01, полиэтиленовых = 0,005; – расчетная длина участка газопровода одного диаметра, см.

Для внутренних и наружных газопроводов расчетную длину определяют с учетом приведенной длины, зависящей от эквивалента длины трубы, учитывающей местные сопротивления:

где – расчетная длина газопровода, м; – действительная длина газопровода, м; − приведенная длина газопровода, м, равная:

– эквивалентная длина, на которой падение давления газа на трение равно падению давления в местных сопротивлениях при = 1; ∑ζ – сумма коэффициентов местных сопротивлений на расчетном участке газопровода длиной .

Эквивалентную длину определяют по формулам:

для ламинарного режима движения газа

для турбулентного режима движения газа

Для жилых домов в газопроводах низкого давления местные потери давления газа определяют как часть от потерь по длине, т.е. линейных потерь, %:

от ввода до стояка………………………………………………………… 25

на стояках……………………………………………………………………20

на внутриквартирной разводке в зависимости от длины, %:

до 2 м………………450 до 7 м…………………120

» 4 м………………300 » 12 м…………………50

Допустимую величину потерь давления принимают:

во внутренних и дворовых газопроводах……………60 даПа (60 мм)

в уличных и внутриквартальных газопроводах…….120 даПа (120 мм)

Таким образом, общая допустимая потеря давления в распределительных сетях низкого давления (от ГРП до самого отдаленного потребителя газа) составляет 180 даПа.

При гидравлическом расчете газопроводной сети здания необходимо учитывать естественный гидростатический напор газа, возникающий в связи с тем, что плотность газа меньше плотности воздуха, и как результат газ поднимается вверх по газопроводу.

Гидростатический напор, Па, определяют по формуле

где – высота подъема газа, т.е. разность геодезических отметок начального и

конечного участка газопровода, м;

И – плотность воздуха и газа, кг/м 3 , при нормальных начальных условиях

состояния газа (давлении 0,1 МПа и температуре 0°С).

В результате гидравлического расчета следует проверить условие обеспечения подачи газа потребителям, т.е. чтобы давление газа на вводе было не меньше требуемого давления с учетом гидростатического напора :

Величина требуемого давления равна:

где – необходимое давление газа у диктующего газового прибора, Па или даПа; − гидростатический напор, Па;

∑ – сумма потерь давления по длине и в местных сопротивлениях в сети от ввода до диктующего газового прибора, Па.

Если неравенство не выполняется, то следует увеличить диаметры труб, с тем чтобы уменьшить общие потери давления.

Для нормальной работы бытовых газовых приборов всегда указывается номинальное давление газа 2 (200 мм) или 1,3 кПа (130 мм), поэтому после ГРП в газовой сети устанавливают давление газа соответственно 3 (300 мм) или 2 кПа (200 мм).

Таким образом, при расчете газовых сетей в зданиях необходимо учитывать следующие условия:

1. На вводе создается располагаемое давление газа , равное действующему (фактическому) давлению плюс дополнительное естественное давление газа (гидростатический напор), т.е.

2. Располагаемое давление всегда должно быть не меньше требуемого:

3. Требуемое давление складывается из потерь по длине и в местных сопротивлениях и номинального давления у газовых приборов без естественного гидростатического напора.

4. Расчет газовой сети следует выполнять правильно, чтобы сумма допустимых потерь давления в газовых сетях не была бы меньше фактических потерь:

Допустимая величина потерь давления в газовых сетях приведена

в табл. 25.1.