Самое крепкое вещество. Самые прочные материалы в мире. Самый прочный материал во Вселенной

Алмаз до сих пор остается эталоном твёрдости и используется в различных методиках измерения механической твёрдости материалов (методы Роквелла, Виккерса, Мооса). Но существуют материалы, не только сравнимые по твердости с алмазом, но и превосходящие его по этой характеристике.

В статье для сравнения материалов приведена их микротвёрдость по Виккерсу. Сверхтвёрдыми считаются материалы, твёрдость которых превышает 40 ГПа. Для «эталонного» алмаза этот показатель может колебаться в пределах 70 -150 ГПа в зависимости от его чистоты и метода получения (как правило, приводится величина твёрдости алмаза 115 ГПа). То же самое относится и к другим материалам: их твёрдость меняется в зависимости от условий синтеза образца, а иногда варьируется и в зависимости от направления приложенной к нему нагрузки.

1. Фуллерит (до 310 ГПа)

Полимеризованный фуллерит - самое твёрдое вещество, известное науке на данный момент. Он представляет собой молекулярный кристалл — структуру, в узлах которой находятся не отдельные атомы, а целые молекулы (фуллерены — одна из аллотропных модификаций углерода, по форме напоминающая футбольные мячики). Фуллерит оставляет царапины на алмазной поверхности, как на пластмассе.

2. Лонсдейлит (до 152 ГПа)

Предсказание существования лонсдейлита практически совпало по времени с его обнаружением в природе. Эта аллотропная модификация углерода, во многом похожая на алмаз, была найдена в метеоритном кратере. Но природный лонсдейлит, который, вероятно, образовался из графита, входившего в состав метеорита, не отличался рекордной твёрдостью. Лишь в 2009 году ученые доказали, что в отсутствии примесей лонсдейлит может быть твёрже алмаза. Высокую твёрдость ему придает примерно тот же механизм, который действует в случае вюртцитного нитрида бора.

3. Вюртцитный нитрид бора (до 114 ГПа)

Нитрид бора с вюртцитной (плотной гексагональной) кристаллической структурой твёрже, чем кажется: в момент приложения нагрузки он претерпевает локальные структурные модификации, межатомные связи в его решетке перераспределяются, и твёрдость материала вырастает на 78%.

4. Наноструктурированный кубонит (до 108 ГПа)

Кубический нитрид бора был впервые получен в 1957 году Робертом Венторфом (Robert H. Wentorf Jr.) для компании General Electric . В 1969 году компания зарегистрировала торговую марку «Боразон» для кристалла.

В СССР кубический нитрид бора был впервые синтезирован в Институте физики высоких давлений Академии наук под руководством академика Л. Ф. Верещагина . С 1965 года эльбор синтезировался в промышленных масштабах по технологии Абразивного завода «Ильич» (Ленинград).

Уникальные свойства кубонита (также известного под названиями эльбора, боразона и кингсонгита) широко используются в промышленности. Твёрдость кубонита (кубической модификации нитрида бора) близка к алмазной и составляет 80−90 ГПа. В силу закона Холла-Петча, уменьшение размера кристаллических зерен ведет к увеличению твёрдости, и ученые доказали, что наноструктурирование кубонита способно увеличить его твёрдость до 108 ГПа.

5. Нитрид углерода-бора (до 76 ГПа)

Атомы азота, углерода и бора близки по размерам. Углерод и бор образуют схожие кристаллические структуры, отличающиеся высокой твёрдостью. Ученые предпринимают попытки синтезировать сверхтвёрдые материалы, состоящие из атомов всех трех типов — и не безуспешно: например, кубическая модификация BC 2 N демонстрирует твёрдость 76 Гпа.

6. Карбид бора (до 72 ГПа)

Карбид бора — распространенный в современной промышленности материал — был получен еще в позапрошлом веке. Его микротвёрдость (49 ГПа) может быть значительно повышена введением в кристаллическую решетку ионов аргона — до 72 ГПа.

7. Бор-углерод-кремний (до 70 ГПа)

Сплавы на основе системы бор-углерод-кремний чрезвычайно устойчивы к химическому воздействию и высокой температуры, они отличаются высокой микротвёрдостью, достигающей 70 ГПа (для B 4 C-B 4 Si)

8. Борид магния-алюминия (до 51 ГПа)

Сплав бора, магния и алюминия известен своим низким коэффициентом трения скольжения (если бы этот материал не был так дорог, его можно было бы использовать для изготовления машин и механизмов, работающих без смазки) и высокой твёрдостью. Тонкие пленки AlMgB 14 , полученные методомимпульсного лазерного напыления, демонстрируют микротвёрдость до 51 ГПа.

9. Диборид рения (до 48 ГПа)

Механические свойства соединения бора и рения весьма необычны: из-за послойного чередования различных атомов диборид рения анизотропен, т. е.при измерении твёрдости по различным кристаллографическим плоскостям получаются разные значения. При испытаниях под малой нагрузкой диборид рения демонстрирует твёрдость 48 ГПа, однако при увеличении нагрузки значение твёрдости резко падает, устанавливаясь на уровне примерно 22 ГПа. Поэтому некоторые исследователи сомневаются, нужно ли причислять диборид рения к сверхтвёрдым материалам.

10. Монокристаллический субоксид бора (до 45 ГПа)

Субоксид бора, содержащий «недостаточное» количество атомов кислорода, явно демонстрирует свойства керамических материалов: высокую прочность, химическую инертность, устойчивость к истиранию при относительно невысокой плотности. Субоксид бора способен образовывать зерна в форме икосаэдров, которые не являются ни отдельными кристаллами, ни квазикристаллами — это кристаллы-двойники, стоящие из 20 «сросшихся» кристаллов-тетраэдров. Твёрдость монокристаллов субоксида бора составляет 45 ГПа.

Знаете ли вы, какой материал на нашей планете считается самым крепким? Со школы нам всем известно, что алмаз - крепчайший минерал, но он далеко не самый крепкий. Твёрдость - не главное свойство, которым характеризуется материя. Одни свойства могут мешать появлению царапин, другие - способствовать эластичности. Хотите знать больше? Перед вами рейтинг материалов, которые будет очень сложно разрушить.

Бриллиант во всей своей красе

Классический пример прочности, засевший в учебниках и головах. Его твёрдость означает устойчивость к царапинам. В шкале Мооса (качественная шкала, которая измеряет сопротивление различных минералов) алмаз показывает результат в 10 (шкала идёт от 1 до 10, где 10 - самое твёрдое вещество). Алмаз настолько твёрдый, что другие алмазы должны быть использованы для его резки.


Паутина, способная остановить аэробус

Этот материал часто упоминается как самое сложное биологическое вещество в мире (хотя это утверждение сейчас оспаривается изобретателями), сеть паука Дарвина сильнее, чем сталь и обладает большим запасом жёсткости, чем кевлар. Её вес не менее замечателен: нить, достаточно длинная, чтобы окружить Землю, весит всего 0,5 кг.


Аэрографит в обычной посылке

Эта синтетическая пена является одним из самых лёгких строительных материалов в мире. Аэрографит примерно в 75 раз легче пенополистирола (но намного сильнее!). Этот материал может быть спрессован в 30 раз от его первоначального размера без ущерба для его структуры. Ещё один интересный момент: аэрографит может выдержать массу в 40 000 раз больше собственного веса.


Стекло во время краш-теста

Это вещество разработано учёными в Калифорнии. Микролегированное стекло имеет почти совершенное сочетание жёсткости и прочности. Причиной этого является то, что его химическая структура снижает хрупкость стекла, но сохраняет жёсткость палладия.


Вольфрамовое сверло

Карбид вольфрама невероятно твёрдый и имеет качественно высокую жёсткость, но он довольно хрупкий, его легко можно согнуть.


Карбид кремния в виде кристаллов

Этот материал используется в создании брони для боевых танков. Фактически он используется почти во всём, что может защищать от пуль. Он имеет рейтинг твёрдости Мооса 9, а также имеет низкий уровень теплового расширения.


Молекулярная структура нитрида бора

Примерно такой же сильный, как алмаз, кубический нитрид бора имеет одно важное преимущество: он нерастворим в никеле и железе при высоких температурах. По этой причине его можно использовать для обработки этих элементов (алмазные формы нитридов с железом и никелем при высоких температурах).


Кабель из Dyneema

Считается самым сильным волокном в мире. Возможно, вас удивит факт: «дайнима» легче воды, но она может остановить пули!


Трубка сплава

Титановые сплавы чрезвычайно гибкие и имеют очень высокую прочность на растяжение, но не имеют такой жёсткости, как стальные сплавы.


Аморфные металлы легко меняют форму

Liquidmetal разработан в компании Caltech. Несмотря на название, этот металл не является жидким и при комнатной температуре имеют высокий уровень прочности и износотойкости. При нагревании аморфные сплавы могут менять форму.


Будущая бумага может быть тверже алмазов

Это новейшее изобретение создаётся из древесной массы, при этом обладая большей степенью прочности, чем сталь! И гораздо дешевле. Многие учёные считают наноцеллюлозу дешёвой альтернативой палладиевому стеклу и углеродному волокну.


Раковина блюдца

Ранее мы упоминали, что пауки Дарвина плетут нить одного из самых прочных органических материалов на Земле. Тем не менее зубы морского блюдечка оказались ещё сильнее, чем паутины. Зубы лимпетов чрезвычайно жёсткие. Причина этих удивительных характеристик в назначении: сбор водорослей с поверхности горных пород и кораллов. Учёные считают, что в будущем мы могли бы скопировать волокнистую структуру зубов лимпета и использовать её в автомобильной промышленности, кораблях и даже авиационной индустрии.


Ступень ракеты, в которой многие узлы содержат мартенситностареющие стали

Это вещество сочетает в себе высокий уровень прочности и жёсткости без потери эластичности. Стальные сплавы этого типа находят применение в аэрокосмических и промышленно-производственных технологиях.


Кристалл осмия

Осмий чрезвычайно плотен. Его используют при изготовлении вещей, требующих высокого уровня прочности и твёрдости (электрические контакты, ручки для наконечников и т.д.).


Кевларовая каска остановила пулю

Используемый во всём, от барабанов до пуленепробиваемых жилетов, кевлар является синонимом твёрдости. Кевлар - это тип пластика, который обладает чрезвычайно высокой прочностью на растяжение. Фактически она примерно в 8 раз больше, чем у стальной проволоки! Он также может выдерживать температуры около 450 ℃.


Трубы из материала Spectra

Высокоэффективный полиэтилен является действительно прочным пластиком. Эта лёгкая, прочная нить может выдерживать невероятное натяжение и в десять раз прочнее стали. Подобно кевлару, Spectra также используется для баллистических устойчивых жилетов, шлемов и бронетехники.


Гибкий экран из графена

Лист графена (аллотроп углерода) толщиной в один атом в 200 раз сильнее, чем сталь. Хотя графен похож на целлофан, он действительно поражает. Понадобится школьный автобус, балансирующий на карандаше, чтобы проткнуть стандартный лист А1 из этого материала!


Новая технология, способная перевернуть наше представление о прочности

Эта нанотехнология изготовлена ​​из углеродных труб, которые в 50 000 раз тоньше человеческих волос. Это объясняет, почему он в 10 раз легче, чем сталь, но в 500 раз сильнее.


в сателлитах регулярно применяются сплавы из микрорешётки

Самый лёгкий в мире металл, металлическая микрорешётка также является одним из самых лёгких конструкционных материалов на Земле. Некоторые учёные утверждают, что он в 100 раз легче пенополистирола! Пористый, но чрезвычайно сильный материал, он используется во многих областях техники. Boeing упомянул об использовании его при изготовлении самолётов, в основном в полах, сидениях и стенах.


Модель нанотрубок

Углеродные нанотрубки (УНТ) можно описать как «бесшовные цилиндрические полые волокна», которые состоят из одного скатанного молекулярного листа чистого графита. В результате получается очень лёгкий материал. В наномасштабе углеродные нанотрубки имеют прочность в 200 раз больше, чем у стали.


Фантастический аэрографен сложно даже описать!

Также известен как графеновый аэрогель. Представьте себе прочность графена в сочетании с невообразимой лёгкостью. Аэрогель в 7 раз легче воздуха! Этот невероятный материал может полностью восстановиться после сжатия в более чем 90% и может поглощать до 900 раз больше собственного веса в масле. Есть надежда, что этот материал можно будет использовать для ликвидации разливов нефти.

Главный корпус политеха штата Массачусетс

На момент написания этой статьи учёные из Массачусетского технологического института полагали, что они обнаружили секрет максимизации 2-мерной прочности графена в 3-х измерениях. Их пока ещё неназванное вещество может иметь примерно 5% плотности стали, но в 10 раз больше прочности.


Молекулярная структура карбина

Несмотря на то что он является единой цепочкой атомов, карбин имеет удвоенную прочность на растяжение от графена и в три раза большую жёсткость, чем алмаз.


место рождения нитрида бора

Это природное вещество производится в жерле действующих вулканов и на 18% прочнее, чем алмаз. Это одно из двух веществ, встречающихся в природе, которые, как было установлено, в настоящее время превосходят алмазы по твёрдости. Проблема в том, что там не так много этого вещества, и сейчас трудно сказать наверняка, является ли это утверждение на 100% верным.


Метеориты - главные источники лонсдейлита

Также известный как гексагональный алмаз, это вещество состоит из атомов углерода, но они просто расположены по-другому. Наряду с вюрцитом нитридом бора это одно из двух природных веществ тверже алмаза. На самом деле Лондсдейлит 58% тверже! Однако, как и в случае с предыдущим веществом, он находится в относительно малых объёмах. Иногда он возникает, когда графитовые метеориты, сталкиваются с планетой Землёй.

Будущее не за горами, поэтому к концу XXI века можно ожидать появление сверхпрочных и сверхлёгких материалов, которые придут на смену кевлару и алмазам. А пока остаётся только удивляться развитию современных технологий.

Эталоном твердости всегда считался алмаз (сейчас ведутся споры по поводу этого утверждения). То есть, твердость всех материалов сравнивается с алмазом. Но некоторые природные материалы показывают твердость вполне сопоставимую с алмазом. В нашей подборке мы покажем самые твердые материалы на Земле.

Субоксид бора


Это соединение обладает высокой прочностью, но материал хрупкий по причине низкой ударной вязкости. В качестве абразива применяют композиционный материал на основе субоксида бора. Такой процесс проводится с целью повышения показателей ударной вязкости вещества.

Диборид рения


Это очень необычный материал. Если не оказывать на него никакой нагрузки, диборид рения показывает свойства сверхпрочного материала. Если же какая-то нагрузка на него есть, его прочность существенно снижается. В связи с этими его свойствами ученые всего мира до сих пор не могут прийти к общему мнению, стоит ли считать его сверхтвердым материалом.
У этого сплава практически отсутствует такое понятие, как трение скольжения. Это суперкачество могло бы пригодиться в производстве механизмов, ведь тогда не нужна была бы смазка. Но этот твердый материал очень дорогой и из-за этого пока не используется широко в производственных целях.

Бор-углерод-кремний


Это соединение невероятно жаростойко и не восприимчиво к химическим реагентам.

Карбид бора


Это вещество открыли еще три века назад, и с тех пор он применяется во многих производственных процессах. С его помощью обрабатывают сплавы металлов, делают химическую лабораторную посуду. Даже энергетика и электроника не обходится без B₄C. В производстве пластин для бронежилетов также используется этот твердый материал. А если к нему добавить ионы аргона, его твердость станет еще выше.
Это относительно новое соединение, синтезированное химиками.
Этот материал также нашел свое применение для обработки сплавов различных металлов, а его показатели твердости приближены к показателям алмаза.

Вюртцитный нитрид бора


Структура кристаллической решетки этого материала имеет необычную форму, что позволяет этому веществу лидировать в рейтинге твердых веществ. При увеличении нагрузки его показатели твердости увеличиваются почти в 2 раза.
Этот природный материал нашли в воронке от упавшего метеорита, по своей структуре он схож с алмазом, но особой твердости в нем не обнаружили. Ученые доказали, что лишившись различных примесей, этот материал превзойдет алмаз по твердости.
Самый твердый в мире материал, способный даже на алмазе оставить царапины.

Американским исследователям из Индианского университета в Блумингтоне удалось определись субстанцию, которая может оказаться самой прочной во Вселенной. Обнаружили это вещество в нейтронных звездах. Из-за специфической формы исследователи назвали его «ядерной пастой».

По теории ученных, этот материал образуется примерно на километр ниже поверхности нейтронной звезды: атомные ядра сжимаются так близко, что сливаются в сгустки вещества, плотную смесь нейтронов и протонов. Обычно они имеют форму капель, трубок или листов. Еще глубже в нейтронной звезде ядерная материя полностью берет верх, после чего образуется огромное атомное ядро.

В процессе компьютерного моделирования специалисты оценили силу, которую необходимо затратить для растягивания «ядерной пасты». Оказалось, что это вещество прочнее любого другого известного вещества во Вселенной. Физики все еще стремятся найти реальные доказательства существования ядерной пасты. Нейтронные звезды имеют тенденцию вращаться очень быстро, и, как следствие, могут испускать рябь в пространстве - гравитационные волны, которую мешают изучать материалы, из которых состоят звезды.

Одним из способов, которым ученые руководствуются - это опора исследования на внутренние структуры звезд, которые могут поддерживать существование гор на поверхности этих небесных тел. Из-за сильной гравитации высота гор обычно не больше нескольких сантиметров, однако «ядерная паста» может способствовать появлению более крупных неровностей высотой несколько десятков сантиметров.

Карта мира для нас дело привычное – еще со школы, знаем все о климате, делении на ареалы и расположении той или иной страны. Но недавно британские ученые из Плимутского университета сделали открытие, которое по сути заставит переписать учебники.

Твердость алмаза можно определить с помощью нескольких известных ранее шкал. Твердость минералов – такой показатель, измерения которого лучше избегать, если такая возможность существует. Чтобы проверить твердость, нужно царапать минерал различными материалами. Фридрих Моос – известный ученый-минералог – в 1811 году предложил использовать для определения твердости камней специальную шкалу, придуманную им. Впоследствии ее назвали шкалой Мооса.

Что же такое твердость? Простыми словами, это сопротивление, которое оказывает минерал, когда его пытаются поцарапать другим минералом или материалом. Фридрих Моос разработал шкалу с коэффициентом твердости от 1 до 10, где 1 – это тальк, а 10 – алмаз. Ученый взял в свою эталонную шкалу легкодоступные минералы и построил их в линейку по возрастанию сопротивления другим минералам. Числа твердости, указанные Моосом, не определяют истинную твердость минерала.

Алмаз – самый твердый в мире минерал естественного происхождения, по шкале Мооса его показатель равняется 10. Корунд имеет показатель, равный 9. Ученый удалось синтезировать карборунд, который превосходит по твердости корунд, но алмаз он все равно не царапает. Сталь по твердости намного уступает алмазу, ее твердость находится в диапазоне от 5,5 до 7,5 в зависимости от сплава. Тверже алмаза сплав стали сделать не удалось. Но твердость стали определяется с помощью алмазных пластин: насколько пластинка или пирамидка вдавится в образец стали, такая и будет твердость. Сейчас все чаще на производстве алмазы заменяются стальными шариками специальных сплавов.

Прочность алмаза, или почему алмаз такой твердый

Очень давно, когда на Земле еще не было жизни, а сама планета была молодой, на поверхности происходили природные процессы. Тектоническая порода находилась в расплавленном состоянии, она перемешивалась под действием высоких температур и паров различных испарений, а потом медленно остывала. Все эти процессы привели к формированию самого твердого камня, который сейчас называется алмазом.

Происхождение названия данного камня уходит своими корнями в глубокую древность, почему его стали называть именно алмазом, до конца остается неизвестным, но существует ряд предположений:

  1. Слово алмаз пришло из Греции. “Адамас” – “твердый”, “несокрушимый”.
  2. “Ал-ма” от персидского “твердый”.
  3. Название камня происходит от женского имени Элиза или Элайза. Полная форма этого имени Елизавета, означает «Божья милость». По легенде была девушка, которая обладала даром исцеления людей. Имя ее было Элиза. Она была крепка душой и телом, могла своим умением поднять на ноги даже самого тяжелобольного человека. Однажды Элиза влюбилась в прекрасного юношу, он ответил на ее чувства, их любовь была прекрасна, но длилась недолго. Элиза отправилась в дальний путь, чтобы пополнить запасы целебных трав. В это время ее возлюбленный тяжело заболел. Когда Элиза вернулась, он был уже мертв. Девушка жила в горах, она зашла в одну из пещер горной местности и горько заплакала. Это были самые первые ее слезы, они обратились в камни, которые потом стали называть алмазами.

Твердость алмаза и графита

Интересным фактом является то, что алмаз – самый крепкий минерал, а графиту по шкале Мооса соответствует число 1, что означает, что он самый мягкий.

Алмаз и графит состоят из одинаковых атомов одного и того же химического элемента – углерода. Тогда почему одно вещество самое мягкое, а другое – самое твердое? Ответ очень прост. Все дело в химических связях или кристаллических решетках этих минералов. Атомы углерода по-разному связаны между собой, поэтому они проявляют разные химические и физические свойства: имеют различный внешний вид, твердость, пластичность, блеск и другие параметры. Графит имеет слоистую структуру. Атомы углерода между собой связаны слабо, это и объясняет то, что графит очень мягкий.

Лонсдейлит – синтетический алмаз

В природе нет материала тверже алмаза, но наука не стоит на месте. Ученым удалось синтезировать вещество, которое является на 58% прочнее алмаза. Название этого материала – лонсдейлит. Он может выдержать давление на 55 ГПа больше, чем самый твердый природный минерал. Но его использование почти невозможно, потому что его очень трудно получать. Стоимость получения не оправдывает затраченных средств, а в его применении нет особой необходимости. Назван лонсдейлит в честь кристаллографа Кетлин Лонсдейл, которая была родом из Британии.